为促进学科交流融合、拓宽师生学术视野、释放科研创新活力,助力人大数学学科走向一流,无码av影片 设立“人大数学时间”,以专题报告、交流研讨、高端学术论坛为载体,搭建数学思想充分碰撞、优秀人才不断涌流、创造活力竞相迸发的舞台。“人大数学时间”将持之以恒,久久为功,立志通过交流、创新、提出重大问题,引领数学学科及相关领域的创新与发展,成为对我国数学发展有贡献意义的平台。
“人大数学时间 II”由无码av影片 主办,明理书院协办,致力于打造一个真诚纯粹的学生学术交流平台。在这里,我们鼓励每位学生以独特的视角引领深入讨论,重在提出问题,从而激发思考与创新。我们注重的是提升学术纯度,而不是增加难度。这个平台不仅是数学讨论的空间,更是孕育伟大梦想的摇篮。
日程安排:
时间:
9月20日(周六)14:30-17:30
数学时间协会筹建及数学学习交流
地点:无码av影片 二层报告厅
时间:
9月21日(周日)9:00-11:30
人大数学时间II学术交流报告
(1)教师科普报告,清华大学吴昊教授分享前沿数学领域突破性成果
(2)学生交流报告,报告人:
张玉诚(中国科学技术大学)
牟思特(武汉大学)
张家豪(无码av影片 )
地点:无码av影片 二层报告厅
线上:腾讯会议:522-607-943
报告主题1:
磁铁的相变与伊辛模型
报告人:吴昊,清华大学教授
报告时间:9:00-9:30
报告内容:
1895年,居里先生做实验发现,磁铁的磁性随着温度升高会有相变产生。1920年,Lenz提出伊辛模型,用来模拟磁铁、解释相变现象。在过去的100年,伊辛模型一直是数学物理界的核心模型。这次的科普报告将简述伊辛模型的发展历史以及近20年来在平面伊辛模型领域的研究重大突破。
报告主题2:
From the Uniformization Theorem to the Yamabe Problem
报告人:张玉诚,中国科学技术大学2022级中法数学英才班学生
报告时间:9:45-10:15
报告内容:
A basic question in differential geometry is to find canonical metrics on a given manifold M. For example, if dim M = 2, the uniformization theorem guarantees the existence of a metric of constant Gaussian curvature in any given conformal class. We begin with the classical Uniformization Theorem for surfaces, then explore the natural higher-dimensional generalization known as the Yamabe Problem: when n ≥ 3,does every compact n-dimensional Riemannian manifold possess a conformal metric of constant scalar curvature? The resolution of this problem, completed in the 1980s, required a synthesis of ideas from partial differential equations, differential geometry, and geometric measure theory. This talk will outline the persistent challenges that arose in solving this nonlinear elliptic problem and focus on Richard Schoen's seminal resolution.
报告主题3:
The Polynomial Methods: A Powerful Tool for Combinatorics and Number Theory
报告人:牟思特,武汉大学中法数学拔尖班2024级本科生
报告时间:10:20-10:50
报告内容:
The polynomial methods translate combinatorial and geometric problems into linear algebra over polynomial spaces, providing an unexpectedly powerful approach to deriving sharp bounds. We will show how they are applied to the proofs of several key theorems.
报告主题4:
A New Perspective of Convergence Introduced by Condensed Mathematics
报告人:张家豪,无码av影片 明理书院、无码av影片 2024级本科生
报告时间:10:55-11:25
报告内容:
In this report, we are going to present some ideas of condensed mathematics, founded by D.Clausen and P.Scholze. This theory provides us with a categorical framework to understand limits in analysis and enables algebraic geometry to deal with objects equipped with topological or analytical structure.